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Abstract: We propose a dynamic simultaneous localization and mapping technology for unsupervised motion removal (UMR-SLAM), 
which is a deep learning-based dynamic RGBD SLAM. It is the first time that a scheme combining scene flow and deep learning SLAM is 
proposed to improve the accuracy of SLAM in dynamic scenes, in response to the situation where dynamic objects cause pose changes. 
The entire process does not require explicit object segmentation as supervisory information. We also propose a loop detection scheme 
that combines optical flow and feature similarity in the backend optimization section of the SLAM system to improve the accuracy of loop 
detection. UMR-SLAM is rewritten based on the DROID-SLAM code architecture. Through experiments on different datasets, it has been 
proven that our scheme has higher pose accuracy in dynamic scenarios compared with the current advanced SLAM algorithm.
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1 Introduction

Simultaneous localization and mapping (SLAM) is an 
important technology in computer vision and autono⁃
mous robot navigation research. Its main goal is to en⁃
able mobile devices (robots, autonomous vehicles, un⁃

manned aerial vehicles or AR/VR devices) to achieve au⁃
tonomous positioning and map building by interacting with 
sensors in unknown or changing environments. SLAM sys⁃
tems typically include the following key components: data 
collection and preprocessing, front-end data processing, 
state estimation, map construction, and backend optimiza⁃
tion, such as the typical Oriented FAST and Rotated BRIEF 
(ORB) -SLAM system. At present, although SLAM technol⁃
ogy faces many challenges, such as sensor accuracy errors, 
computational complexity, and real-time requirements, it is 
still the core technology of many autonomous systems, pro⁃
viding the possibility for machines and equipment to navi⁃
gate and work efficiently in complex environments.

In recent years, many deep learning and traditional SLAM 
fusion schemes have been proposed to improve the perfor⁃
mance and robustness of environmental perception and pose 
estimation. Deep neural networks can play a crucial role in 
image feature extraction, semantic map construction, and 
loop detection. Extracting feature points or descriptors 

through deep learning models can improve the accuracy of 
image matching and feature tracking in visual SLAM. Deep 
learning can be used to establish a loopback detection 
model for visual and semantic contexts, which is used to de⁃
tect whether the robot has returned to the previously visited 
position, and then perform global optimization to reduce cu⁃
mulative errors. Deep learning can also be used for semantic 
map construction, enabling robots to understand the seman⁃
tic information of different objects and regions in the envi⁃
ronment, which contributes to autonomous decision-making 
and path planning in the field of autonomous driving. In ad⁃
dition, eliminating dynamic objects can also effectively im⁃
prove the accuracy of pose estimation.

Semi-supervised or unsupervised SLAM is an emerging 
research field that explores how to train SLAM systems with 
unlabeled or limited labeled data. This method helps to ad⁃
dress the dependency on large numbers of labeled data in 
traditional SLAM methods. Deep learning can also achieve 
end-to-end SLAM, directly generating maps and trajectories 
from sensor data without the need for intermediate steps. Re⁃
cently, some research efforts have been devoted to designing 
more effective multimodal fusion strategies. The goal is to 
fuse data from different types of sensors, such as vision, 
light detection and ranging (LiDAR), GPS and inertial mea⁃ 
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surement unit (IMU), together to improve the robustness and 
accuracy of SLAM systems. Real-time performance has al⁃
ways been a key challenge for SLAM systems. Researchers 
are striving to improve the computational efficiency of 
SLAM systems to meet the requirements of real-time appli⁃
cations such as autonomous driving, virtual reality, and ro⁃
bot navigation. Their main tasks include hardware accelera⁃
tion, low-power algorithms, and distributed SLAM.

The current state-of-the-art algorithm DROID-SLAM[30] 
combines traditional methods with deep learning and has the 
advantages of high accuracy, strong robustness, and good gen⁃
eralization. However, it does not perform well in dynamic sce⁃
narios like the KITTI dataset, and pose estimation is easily af⁃
fected by passing vehicles and pedestrians. As shown in Fig. 
1, when a truck moves from left to right across the camera 
frame, the algorithm may mistakenly perceive the camera as 
undergoing a left-turning motion, leading to erroneous pose es⁃
timation outputs. Therefore, based on DROID-SLAM, we pro⁃
pose a new SLAM scheme to address the issue of dynamic ob⁃
jects affecting algorithm accuracy. The main contributions of 
our work are summarized as follows:

• We propose for the first time a scheme that combines 
scene flow and deep learning SLAM to improve the accuracy 
of SLAM in dynamic scenes while outputting dynamic object 
masks. The entire process does not require explicit object 
segmentation as supervisory information.

• We propose a new update module that can iteratively 
update the camera pose.

• We propose a loop detection scheme that combines opti⁃
cal flow and feature similarity to improve the accuracy of 
loop detection without increasing additional computational 
complexity.
2 Related works

2.1 Dynamic SLAM
SLAM solutions typically assume that the scene is almost 

static or has a low level of dynamism. However, there are of⁃
ten a large number of dynamic objects in real-world sce⁃
narios, including pedestrians, animals, cars, bicycles, and 
other dynamic objects, which can cause erroneous changes 
in feature matching relationships, resulting in inaccurate re⁃
sults due to the lack of reliable features in SLAM solutions.

To solve the above problem, some methods adopt object 
detection or semantic segmentation schemes to eliminate po⁃
tential dynamic targets[1–4]. However, a large number of se⁃
mantic segmentation objects in the camera’s field of view 
may lead to insufficient features, which in turn can lead to 
problems with map matching and motion tracking, such as 
decreased system accuracy, tracking failures, and trajectory 
loss. In fact, dynamic objects may be static in the scene. 
Due to the limitations of semantic categories, on the one 
hand, they cannot cover all potential dynamic targets; on the 

other hand, some static objects are dynamic in the scene, 
such as books in people’s hands. Many studies have intro⁃
duced additional constraints to confirm the true dynamic ob⁃
jects in the scene. Based on semantic segmentation, authors 
in Ref. [5] utilize deep inconsistency checking to remove po⁃
tential dynamic objects. Some methods do not rely on prior 
semantic information but distinguish between dynamic and 
static through the association with feature points[6–9]. Refs. 
[10] and [11] use dense optical flow methods and semantic 
segmentation to estimate the motion of objects in the scene, 
which helps to construct a globally consistent scene map 
and improve the robustness and accuracy of the system. 
Refs. [12] and [13] predict the camera’s self-motion itera⁃
tively by correlating the camera’s self-motion with the seg⁃
mentation of dynamic objects, achieving their joint optimiza⁃
tion in a single learning framework. Unlike the above re⁃
search, the method proposed can output pixel-level pose 
changes unsupervised, segment true dynamic objects, and 
have higher robustness to different dynamic scenes.
2.2 Optical Flow and Scene Flow

In SLAM algorithms, optical flow is commonly used to rep⁃
resent motion information between adjacent frames in a 
video sequence. This motion information can help SLAM 
systems estimate camera motion more accurately when pro⁃
cessing dynamic scenes.

Deep learning-based optical flow estimation methods 
have gradually become a mainstream research direction. 
The FlowNet series[14–15] is  the first to use an end-to-end 
deep learning architecture for optical flow estimation, em⁃
phasizing the importance of the training data sequence. Ref. 
[16] introduces many novel improvements of unsupervised 
optical flow models to enhance performance metrics. Refs. 
[17] and [18] consider the use of coarse-to-fine techniques 
to improve the performance metrics of optical flow networks. 
Refs. [19] and [20] construct multi-scale 4D correlation vol⁃
umes for all pixels and iteratively update the optical flow 

▲Figure 1. Two images from the KITTI07 sequence
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field through recurrent units that search the correlation vol⁃
umes. Refs. [21] and [22] use multi-frame information for op⁃
tical flow fusion to enhance optical flow computation perfor⁃
mance. Additionally, some approaches[23–24] have made sig⁃
nificant efforts to improve the computational efficiency of 
lightweight optical flow estimation networks for mobile and 
low-power usage scenarios.
2.3 Loop Detection

Backend optimization is a key step in SLAM systems to 
improve the accuracy of positioning and mapping. Usually, 
graph optimization or nonlinear optimization techniques are 
used to minimize estimation errors. Closed loop detection is 
the key to optimizing the backend of SLAM systems. Closed 
loop detection or position recognition is also an important 
module for reducing trajectory errors in the SLAM backend. 
The traditional loop detection scheme is based on a bag of 
words (BoW) [25] for storage and uses manually designed vi⁃
sual features. The BoW method first extracts features, in⁃
cluding scale invariant feature transform (SIFT), speeded-up 
robust features (SURF), ORB, etc., from a large number of 
training images, and classifies these features (Word) with K-
means clustering algorithms to obtain leaf nodes called dic⁃
tionaries. Therefore, an image can be described as a vector 
under the dictionary based on whether the corresponding 
word (Word) appears. However, changes in lighting, 
weather, viewpoints, and moving objects in real-world 
scenes makes this problem more complex. Different from tra⁃
ditional word bag-based methods, deep networks can typi⁃
cally learn complex internal structures in image data with⁃
out manual design of visual features.

To address this issue, previous research works like Ref. 

[26] use ConvNet features that are more robust to changes in 
viewpoints and conditions and derived from pretrained mod⁃
els on a universal large-scale image processing dataset. This 
scheme can predict the matching landmark candidate boxes 
between images and extract features. To improve the algo⁃
rithm’efficiency, Gaussian random projection (GRP) is used 
to reduce the data dimension for feature similarity calcula⁃
tion. However, for high-dimensional data with partially non-
uniform distribution, using GRP is not conducive to preserv⁃
ing the original variance.

Other representative works[27–29] are based on deep auto⁃
matic encoder structures to extract compact representations 
that compress scenes unsupervisedly.
3 Proposed Method

Our proposed simultaneous localization and mapping 
technology for unsupervised motion removal (UMR-SLAM) 
structure is shown in Fig. 2. We input a set of RGBD image 
sequences and use encoders to extract features and context 
features respectively. By calculating the correlation volume 
through the feature dot product, the update operator itera⁃
tively updates the pose changes of each pixel, and calcu⁃
lates the optical flow and dynamic region mask based on the 
pixel-by-pixel pose. After removing the optical flow from the 
dynamic region, the camera pose is obtained through bundle 
adjustment (BA) optimization. Finally, in the backend opti⁃
mization, the global pose and trajectory are optimized based 
on the loop detection results to reduce cumulative errors. 
This method takes RGBD image sequences as input and out⁃
puts camera pose. UMR-SLAM has an end-to-end differen⁃
tiable architecture, which combines the advantages of classi⁃
cal methods and deep learning networks. We use the scene 

▲Figure 2. System structure of UMR-SLAM
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flow method to unobservedly remove dynamic objects, and 
integrate the results of the two detection schemes, optical 
flow and feature similarity in loop detection, making the 
SLAM system more robust in dealing with challenging dy⁃
namic scenes. Specifically, distinguished from DROID-
SLAM, which iteratively updates camera pose and depth, we 
iteratively update the poses of all pixels. In DROID-SLAM, 
the optical flow is used to perform every update of camera 
poses, while we only use the optical flow caused by camera 
motion to calculate camera poses. Next, we elaborate on the 
details of our method.
3.1 Network Architecture

The core of the proposed dynamic SLAM network is to use 
a dynamic update module to estimate the 3D rigid body mo⁃
tion of all pixels in the scene, and then calculate the optical 
flow and dynamic region. The camera pose is optimized 
through BA. Compared with DROID-SLAM, which uses opti⁃
cal flow as the intermediate motion representation, we can 
determine the pixels of dynamic objects by unsupervised 
learning technology and only use the static optical flow 
caused by camera motion to calculate camera pose, which 
can greatly improve the positioning accuracy of the algo⁃
rithm in dynamic scenes.

In contrast to DROID-SLAM, we directly input the RGBD 
images for feature extraction and optical flow calculation. 
For each pair of RGBD images, in the dynamic update mod⁃
ule, we iteratively update the 3D motion of all pixels, rather 
than the camera pose and inverse depth map. Our update it⁃
eration not only runs on adjacent frames but can be applied 
to any number of frames to obtain higher accuracy scene 
flow information and achieve joint global refinement of all 
camera poses, which helps to minimize long trajectories and 
loop drift. In the backend optimization, we also use the 
Gaussian Newton method to execute BA to adjust the cam⁃
era pose T to minimize the cost function.

We use a frame graph to represent the covisibility be⁃
tween frames. We determine whether two frames are co⁃
viewed through optical flow and establish a coview frame 
map. Differing from DROID-SLAM, we use the completed 
depth map instead of the original one to calculate the frame 
graph. In the coview, nodes represent each input image, and 
edges, which are the connections between nodes, indicate 
that the two images are covisible. During the training and in⁃
ference process of the model, the frame graph is dynamically 
constructed and updated. Each time a new optical flow is 
calculated to remove dynamic objects, the frame map with 
new visibility is updated.
3.1.1 Features Extraction

In the feature extraction module, we use conventional re⁃
sidual modules and downsampling convolution modules to 
obtain high-dimensional dense feature maps with a resolu⁃

tion of 1/8 of the original image. At the same time, we use 
pretrained ResNet50 with skip connections to extract con⁃
text features at 1/8 resolution. ResNet50 can extract fea⁃
tures with a greater degree of semantic information and a 
larger receptive field, which can be better used for loop de⁃
tection and rigid motion object grouping.
3.1.2 Building Correlation Volume

1) Correlation pyramid: For two frames Ii and Ij with a 
common view, the correlation volume C is calculated using 
the dot product of two position feature vectors in the feature 
map f, as shown in the following equation.

Cij
u1 v1u2 v2 = f ( Ii )u1 v1 ⋅ f ( Ij )u2 v2, (1)

where Ci,j
u1,v1,u2,v2 ∈ RH × W × H × W represents the correlation be⁃

tween the features of image Ii at position (u1, v1) and image Ij at position (u2, v2). Then we use average pooling concatena⁃
tion to establish a four-layer correlation pyramid.

2) Correlation lookup: The lookup operator is Lr:
RH × W × H × W × RH × W × 2 → RH × W × (r + 1)2. This operator uses bi⁃
linear interpolation to index the relevant volume using an op⁃
tical flow field coordinate grid with a radius of r. Splice the 
relevant features found at each layer of the relevant pyramid 
into a feature vector.
3.1.3 Dynamic Update Module

Fig. 3 shows the dynamic update module of UMR-SLAM. 
We find the relevant features of the optical flow calculated 
by the current pixel pose through the relevant volume. The 
obtained features are fed together with static optical flow 
and global feature dynamics into two convolutional layers, 
resulting in intermediate features. These features are then 
fed into convolutional gated recurrent unit (ConvGRU), and 
then optical flow residuals, their confidence levels, and 
rigid motion embedding vectors are obtained through convo⁃
lutional layers. The dense pixel pose T can be updated using 
the least squares method. According to the dense pose calcu⁃
lation, the dynamic region of the optical flow is deducted 
and fed into the DBA layer, which combines the optical flow 
confidence to optimize the camera pose. Finally, the opti⁃
mized camera pose is used to calculate optical flow and pro⁃
vided for the next iteration. Not similar to the iterative opera⁃
tion of the update module in DROID-SLAM, the update op⁃
erator combines neural networks and optimization algo⁃
rithms to update the dense pixel pose, and then performs 
subsequent optical flow and camera pose calculations based 
on the pixel pose. The update operator is based on the Con⁃
vGRU of recurrent neural networks (RNN) for iterative up⁃
dates. The optical flow and the pixel density pose are fed 
into the next iteration as new optimization terms. During 
each iteration of the update process, the module generates 
dense pixel pose increments, optical flow generated by cam⁃
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era motion, dynamic object masks, and camera pose.
1) Update operator: The update operator is a GRU unit 

based on a recurrent neural network, mainly composed of 3×
3 convolutional kernels with dilation rates of 1 and 3. It uses 
index operators to retrieve features from correlated volumes 
and output optical flow correction quantities. We use depth 
maps and the current estimated pose to estimate the 2D cor⁃
respondence. Taking the edges in the frame graph (i, j ) ∈ ε 
as an example, pi is the grid coordinate of frame i. pij is the 
corresponding projection coordinate of frame i in frame j, 
and the projection transformation process is as follows:

pi, j = ( )Tsi,j ⋅ ∏c

-1 ( pi,di ) , (2)
where ∏c

 is a pinhole camera model that maps a set of 3D 
points to the image, while ∏c

-1 is the inverse projection 
function that maps the inverse depth map di and pi to the 3D 
point cloud. The pose transformation matrix between image i 
and image j is Tsi,j. We can obtain pij through the transforma⁃
tion of 3D points in the world coordinate system and the pin⁃
hole camera model.

Based on the corresponding relationship, we can retrieve 
correlation features in the correlation volume and calculate 
the optical flow field pij - pj. The input of GRU includes opti⁃
cal flow field, current dense pixel pose, depth residual d' -
d∗, and correlation features. In the depth residual term, the 
inverse depth d' is the depth component of pij, and d* is the 
inverse depth map of pij index image frame j. Each feature is 
extracted with high-dimensional information through two 
convolutional layers, and then fed into the GRU module.

Then, three two-layer convolu⁃
tions are applied to the hidden 
states of the GRU output to calcu⁃
late the rigid motion embedding 
map V, the revision map optical 
flow field correction map r= (rx, 
ry, rz), and the corresponding con⁃
fidence w∈ [0, 1]. The correction 
amount r is the correction of the 
optical flow caused by the current 
SE3 field. Three outputs serve as 
inputs to the dense-SE3 layer to 
generate updates to the SE3 
sports field. The confidence level 
of w as the optical flow correction 
is used to calculate the cost func⁃
tion.

The resolution of the SE3 mo⁃
tion field estimated by the net⁃
work is 1/8 of the original image 
resolution.  To obtain the original 
resolution map, we perform con⁃
vex upsampling in Lie Algebra 

and then use exponential mapping back to the manifold.
2) Dense-SE3 layer: This layer is a differentiable optimi⁃

zation layer used to update the current pose of pixels. It 
maps the optical flow revision mapping r to the SE3 field up⁃
date. The rigid motion embedding vector v is used to soft⁃
group pixels into rigid objects. We use embedding vectors to 
build an attention matrix between all pairs of (i,j). We calcu⁃
late the similarity aij∈[0, 1] between two embedding vectors 
vi and vj by taking the sigmoid activation function σ of the 
negative L2 distance.

aij = 2*σ ( )- v i - v j

2 ∈ [ 0,1 ] . (3)
We use similarity to define an objective function based on 

reprojection error to solve the updated pose δi for each 
pixel i:

E ( δ ) = ∑
i ∈ Ω

∑
j ∈ Ni

aij rj + ∏c
(Tj Xj ) - ∏c

( eδiTi Xj ) 2
wj , (4)

where  X 2
w = XTdiag (w ) X. The above equation indicates 

that for each pixel i in the image area Ω, the transformation Ti is described as a transformation of pixel j in the neighborhood 
Ni of pixel i. Only objects with similar embedding vectors that 
may belong to the same rigid motion as (i, j) have a significant 
contribution to the objective function. To reduce the memory 
footprint when solving Eq. (4), we implement Gaussian New⁃
ton updates in CUDA to estimate the next SE3 pose.

3) Motion field judgment: Moving objects in the image 

▲Figure 3. Dynamic update module
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greatly affects the calculation of camera pose. Therefore, it 
is very necessary to remove dynamic objects. We filter the 
rotation and translation of each pixel predicted by the scene 
flow algorithm as shown in Figs. 4b and 4c, and if the pose 
τi and ϕi of pixel i differ from the average motion pose τmean and ϕmean of the entire image by more than a certain thresh⁃
old (μ set to 0.01), it is regarded as a motion point as shown 
in Fig. 4d. We set the optical flow mask M of the moving 
point directly to 0, without performing subsequent camera 
pose estimation.

M motion
i = [ ||τi - τmean|| ≥ μτ ] + [ ||φi - φmean|| ≥ μφ ] . (5)

4) DBA: After obtaining the corrected static flow field, we 
use the Gaussian Newton-based dense bundle adjustment 
(DBA) layer algorithm in DROID-SLAM to optimize the cam⁃
era pose G. The DBA layer does not affect gradient back⁃
propagation. The error function is defined as follows:

E (G') = ∑
(i,j ) ∈ ε

 p*
i,j - ∏c

(G'i,j ⋅ ∏c

-1 ( pi, d'i ) ) 2
Σ ij , (6)

Σ ij = diagwij , (7)
where p*

i,j = ri,j + pi,j represents the updated and corrected 
pi,j. Eq. (7) calculates the Mahalanobis distance weight, and 
the error term is weighted based on the combined confi⁃
dence wij. The HΔx=g problem can be solved by Schur elimi⁃
nation using the sparsity property of matrix H to accelerate 
the solution process.
3.2 Supervision

We use pose loss and flow loss supervision to train our 
network. Both loss functions are applied to paired training 
sequences. We calculate the static optical flow fstatic based 
on the camera pose predicted through each iteration. The op⁃
tical flow calculated from the true depth and camera pose 
truth is used as the supervisory information fgt.

f kstatic = ∏c( )G ⋅ ∏c
-1 ( p ) - p, (8)

where G represents the camera pose, p represents the image 
coordinate grid, and k represents the number of iterations. 
We design the loss as the average L2 distance between two 
optical flow fields.

L flow = ∑
k = 1

N

γN - k f kstatic - fgt 2, (9)
with γ= 0.9. We also apply an additional loss function to the 
GRU-predicted optical flow increment and set the weight 
to 0.2.

Pose loss uses the actual pose T and the predicted camera 
pose G after each update to calculate the loss.

Lpose = ∑
k = 1

N

γN - k LogSE3 (T -1 ⋅ Gk ) 2. (10)
The overall loss function is the sum of pose loss and opti⁃

cal flow loss. To ensure that the two types of losses are on 
the same order of magnitude, we use coefficients w1 and w2 to adjust the weights of the two types of losses. We set w1 to 
0.1 and w2 to 1.

L = w1 L flow + w2 Lpose. (11)

3.3 SLAM System
In terms of input modes, our SLAM system only supports 

RGBD data input. In the inference stage, we embed the 
above network structure into the entire SLAM system.

During initialization, our algorithm accumulatively re⁃
ceives 12 keyframes based on optical flow differences, con⁃
structs frame maps for them, and uses our dynamic update 
module to calculate their initial pose. In addition, we pro⁃
cess on the depth image.

1) Depth image estimation: The importance of depth infor⁃
mation has been well demonstrated by a large amount of re⁃

▲Figure 4. (a) Original image; (b) visualization image of translation amount;(c) visualization image of rotation amount; (d) dynamic region mask

(a) (b) (c) (d)
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search work in the past. Usually, we use depth sensors to ob⁃
tain accurate and reliable distance measurements, while 
also possessing real scene scales. However, neither LiDAR 
nor other commonly used RGBD cameras can provide dense 
pixellevel depth maps. The holes and blank pixels in sparse 
depth maps indicate a serious lack of information at the ap⁃
plication level, leading to algorithm reliability failure. 
Therefore, it is necessary to fill in these blank pixels in prac⁃
tical applications.

Specifically, for the KIITI dataset, we directly obtain la⁃
ser data from the odometer dataset and convert it into depth 
images. Obviously, as shown in Fig. 5, the lack of depth in⁃
formation is very severe, with only 5% of the available pixel 
points in the entire image. Here, we use the Completion⁃
Former[31] algorithm to complete the depth map. Before and 
after processing, as shown in Fig. 5, we also attempt to use 
the GA-net[32] algorithm to estimate disparity maps using 
binocular data and obtain depth maps.

In front-end processing, when a new frame arrives, the 
system uses the three closest adjacent frames and the new 
frame to create a temporary graph, and optimize and calcu⁃
late the pose of the new frame.

In backend optimization, the system creates a new frame 
graph containing each reserved keyframe. The edges be⁃
tween key frames are generated according to specific rules 
to eliminate excess edges. We use a dynamic update module 
to optimize the final pose of the entire shape. Then, through 
the proposed loop detection scheme, we directly add edges 
between the two frames with loops to the frame graph for sub⁃

sequent global BA optimization.
2) Loop detection: In backend optimization, closed-loop 

detection is used to detect and correct path drift. It identi⁃
fies features that appear on previously visited locations and 
uses this information to adjust device location estimates and 
maps to reduce cumulative errors. We found that DROID-
SLAM uses optical flow for loop detection, which often fails 
to detect loops well in real-world scenarios and has poor ro⁃
bustness. Using only optical flow to determine whether a 
loop exists may lead to missed detection.

In UMR-SLAM, we propose a solution that combines 
high-dimensional image feature similarity with optical 
flow calculation to improve loop detection accuracy. Image 
feature similarity schemes typically handle image noise 
more robustly, especially in scenarios with lighting 
changes, occlusions, or other complex environments, 
where similarity is more reliable than solely relying on op⁃
tical flow. Compared with optical flow, which focuses only 
on local motion information, image feature similarity 
schemes compare the content of entire images, capturing 
similarity between images from a global perspective. This 
can compensate for the limitation of local motion and im⁃
prove matching accuracy. Combining image feature simi⁃
larity schemes with optical flow calculation provides addi⁃
tional information to validate the existence of loops. For 
example, if optical flow calculation detects significant mo⁃
tion but the image feature similarity is high, it may indi⁃
cate environmental similarity, allowing for more confident 
loop detection and reducing missed detection. Integrating 
these two types of information enhances loop detection ac⁃
curacy and robustness, particularly in situations where op⁃
tical flow calculation may be affected by noise or encoun⁃
ters significant motion. Therefore, we add a branch to the 
entire SLAM system for loopback detection. We directly 
utilize the global context Resnet50 features of existing 
keyframes for feature similarity comparison.

To improve the algorithm’efficiency, we use the principal 
component analysis (PCA) for feature dimensionality reduc⁃
tion before feature similarity comparison. PCA can identify 
the intrinsic patterns of data based on the relationship be⁃
tween features. By calculating the eigenvalues of the covari⁃
ance matrix and corresponding eigenvectors, the direction of 
maximum variance is found in high-dimensional data, and 
the data are mapped to a new subspace with a dimensional⁃
ity not greater than the original data. We use the feature 
maps of the first 128 channels for PCA dimensionality re⁃
duction to 128×30.

Next, cosine distance d is used to measure the distance 
between two features for loop detection.

dcos = cos ( v1,v2 ), (12)
where v1 and v2 represent the feature vector expressions of the ▲Figure 5. RGB, original laser depth map, and completed depth map: 

from top to bottom
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image pair. If it is less than a certain threshold τ (set to 0.12), 
it is considered that a loopback has been detected.
4 Experiments

Initially, UMR-SLAM is trained on datasets Virtual 
KITTI2[33] and KITTI[34], followed by a comprehensive evalu⁃
ation of the methodologies on various real and synthetic da⁃
tasets, encompassing dynamic sequences from Virtual 
KITTI2, KITTI, and TUM-RGBD[35]. During the experimen⁃
tation phase, the absolute trajectory error (ATE) serves as 
the metric for assessing the accuracy of the estimated cam⁃
era trajectory. Subsequently, a series of ablation experi⁃
ments are devised to validate the efficacy of the proposed 
method in dynamic scenarios. Afterward, comparisons are 
drawn between our method and other advanced algorithms 
in dynamic scenarios, such as ORB-SLAM2[36], DROID-
SLAM, and DynaSLAM[37], to showcase the effectiveness of 
our method and the robustness of pose estimation.
4.1 Datasets

We train and test using partial Virtual KITTI2 and KITTI 
datasets. KITTI is a dataset captured in real-world traffic 
conditions, ranging from highways in rural areas to city-
center scenes with many static and dynamic objects. The 
KITTI dataset is typically used as a benchmark test set for 
stereo vision, optical flow, depth prediction, object detec⁃
tion, and visual mileage calculation methods. We mainly use 
00–08 of the visual odometer data as the training set, and 
09 and 10 as the test set.

Virtual KITTI2 is a synthetic dataset modeled after the 
KITTI dataset, consisting of 5 sequences. These sequences 
enhance data by overlaying different weather conditions 
(such as fog and rain) and modifying camera directions and 
angles. In the ablation study, we use the default camera ori⁃
entation as the training set and configurations of 15 and 30 
degrees as the validation set.
4.2 Training Implementation Details

We use 8 NVIDIA GPU V100 for training. Considering 
the possibility of inaccurate depth completion values in the 
sky and limited graphics memory, we randomly crop 208×
960 sized images below the images for training, while modi⁃
fying the internal parameter data.

We make minor adjustments to KITTI to perform an addi⁃
tional 50k iterations with an initial learning rate of 5×10−5, 
and perform spatial and photometric enhancements. To esti⁃
mate parallax, we provide input depth maps for our method 
using GA-Net.

For all experiments, we use the AdamW optimizer with 
weight attenuation set to 1×10−5, and expand the update op⁃
erator for 12 iterations. We use partial model weights from 
ImageNet and RAFT-3D as pretrain weights. Training 
RAFT-3D involves differentiating a computational graph 

composed of Euclidean tensors (such as network weights 
and feature activation) and Lie group elements (such as the 
SE3 transformation domain). We use the LieTorch library to 
perform backpropagation in the tangent space of manifold el⁃
ements in computational graphs.

Adjusting the weights of the two loss functions simultane⁃
ously to make their order of magnitude similar. Due to the 
fast camera movement in the KITTI dataset, we optimize the 
optical flow filtering threshold and expand the range of opti⁃
cal flow selection when establishing frame maps before train⁃
ing. For pixels with missing depth, we directly assign their 
depth value to 0.01, resulting in an inverse depth of 100. 
This point is not considered when calculating the overall op⁃
tical flow, and the mask is set to 0.
4.3 Results

In this section, we compare our proposed approach with 
current state-of-the-art methods on the main-stream SLAM 
datasets.

1) Ablations experiment: We conduct ablation experi⁃
ments on various components of the UMR-SLAM model on 
the Virtual KITTI2 and KITTI datasets, and report the re⁃
sults in Table 1. We compare the indicators using different 
depth completion methods and also provide indicators on 
whether to use loopback detection and whether to use dy⁃
namic object removal. The indicators in Table 1 are all 
tested using RGBD data, and the test indicator is automatic 
test equipment absolute trajectory error (ATE)[M] (RMSE).

We use different depth estimation algorithms to test the fi⁃
nal algorithm metrics. The PENet and CompletionFormer 
methods both complete the depth map converted by laser, 
while GA-net calculates the disparity map using binoculars 
and then uses camera internal references to obtain the depth 
map. We found that the depth maps obtained by GA-net can 
provide better performance. We also test the impact of de⁃
ducting dynamic objects on SLAM, and the experiment 
shows that the ATE index after deducting dynamic objects 
would decrease by about 2.5. We also attempt to use differ⁃
▼Table 1. Ablations experiment of UMR-SLAM, where the best results 
are displayed in bold

Experiment

Depth estimate

Dynamic region removal

Loop detection

Configuration
-

PENet
CompletionFormer

GA-net
No
Yes

-

Flow
Flow
and

feature

τ=0.5
τ=1.2
τ=2

K09
11.527

4.413
3.569
2.689

5.131
2.689

4.058
3.835
3.665
2.689

3.872

K10
4.775
3.366
2.748
1.414

2.351
1.414

1.412

1.414
1.414
1.420
1.427
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ent detection schemes in loop detection, with the highest ac⁃
curacy achieved when optical flow is used together with fea⁃
tures and the feature similarity threshold is 1.2. Fig. 6 
shows a trajectory comparison between our UMR-SLAM and 
the DROID SLAM algorithm, and the results indicate that 
our trajectories are closer to the ground truth.

We test the performance of the proposed UMR-SLAM on 
sequences 09 and 10 of the KITTI dataset and all sequences 
of the Virtual KITTI2 dataset, and provide camera motion 
trajectories. The ATE results are shown in Table 2 below. 
Compared with DROID-SLAM, our UMR-SLAM is more ac⁃
curate and robust in dynamic scenarios. We also evaluate 
TUM RGBD dynamic sequences with different dynamic ra⁃
tios, and the comparison results in Table 3 indicate that 
UMR-SLAM achieves competitive and even the best perfor⁃
mance compared with other classical methods such as DVO-
SLAM, ORB-SLAM2, PointCorr, DROID-SLAM. All meth⁃
ods in the table are tested using the RGBD dataset.
5 Conclusions

In this paper, we introduce UMR-SLAM, an end-to-end vi⁃
sual SLAM algorithm. We combine scene flow with deep 
learning SLAM to improve SLAM accuracy in dynamic 
scenes, without the need for explicit object segmentation as 
supervisory information throughout the entire process. In the 
backend optimization section, we propose a loop detection 
scheme that combines optical flow and feature similarity, 
which can improve the accuracy of loop detection. The re⁃
sults of experiments on different datasets prove that our 

scheme has higher accuracy compared with the current state-
of-the-art deep learning scheme, DROID-SLAM, especially 
in dynamic scenarios. Overall, the flexibility of deep learn⁃
ing and powerful feature extraction capabilities provide new 
solutions to SLAM systems, which can cope with various 
complex environments and tasks. However, the integration 
of deep learning and SLAM still faces significant challenges 
in real-time performance and computational complexity, and 
further research and innovative methods need to be sought 
to address them.
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